北京中显电子有限公司

SPECIFICATION

CUSTOMER : WWW.ZXLCD.COM

MODULE NO.: Z24064R-YYH-VZ#

APPROVED BY:		
(FOR CUSTOMER USE ONLY)		
	PCB VERSION:	DATA:

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY

VERSION	DATE	REVISED PAGE NO.	SUMMARY
В	2009/7/8	6	Modify VOP

北京	中显电子有刚	MODLE NO :	
REC	ORDS OF REV	ISION	DOC. FIRST ISSUE
VERSION	DATE	REVISED PAGE NO.	SUMMARY
0	2007/8/9		First issue
Α	2008.09.18		Modify Timing
В	2009/7/8	6	Modify VOP

Contents

- 1.Module Classification Information
- 2.Precautions in use of LCD Modules
- 3.General Specification
- 4. Absolute Maximum Ratings
- **5.**Electrical Characteristics
- 6.Optical Characteristics
- 7.Interface Description
- 8. Contour Drawing & Block Diagram
- 9. Register Description
- 10. Function Description
- 11. Function Application
- 12 Timing Characteristics
- 13. Microprocessor Interface
- 14. Reliability
- 15.Backlight Information
- 16. Inspection specification
- 17. Material List of Components for RoHs
- 18. Recommendable storage

1.Module Classification Information

$\underbrace{ \underline{Z} \ \underline{X}}_{\textcircled{O} \ \textcircled{O}} \ \underbrace{ \underbrace{ 24064}_{\textcircled{O} \ \textcircled{O}} \ \underbrace{ \underline{R} - \underline{Y} \ \underline{Y} \ \underline{H} - \ \underline{VZ\#}}_{\textcircled{O} \ \textcircled{O} \ \textcircled{O}} \ \underbrace{ \underbrace{ VZ\#}_{\textcircled{O} \ \textcircled{O}} \ \underbrace{ VZ\#}_{\textcircled{O} \ \textcircled{O}} \ \underbrace{ \underbrace{ VZ\#}_{\textcircled{O} \ \textcircled{O} \ \underbrace{ VZ\#}_{\textcircled{O} \ \textcircled{O} \ \end{array}}$

① Brand: WINSTAR DISPLAY CORPORATION

- ^② Display Type : H→Character Type, G→Graphic Type
- ③ Display Font : 240 x 64dots
- ④ Model serials no.

5	Backlight Type:	$N \rightarrow Without backlight$	$T \rightarrow LED$, White
		B→EL, Blue green	A→LED, Amber
		D→EL, Green	$R \rightarrow LED$, Red
		$W \rightarrow EL$, White	O→LED, Orange
		$F \rightarrow CCFL$, White	G→LED, Green
		Y→LED, Yellow Green	
6	LCD Mode :	B→TN Positive, Gray	$T \rightarrow FSTN$ Negative
		N→TN Negative,	
		G→STN Positive, Gray	
		Y→STN Positive, Yellow Gree	en
		M→STN Negative, Blue	
		F→FSTN Positive	
\bigcirc	LCD Polarize	A→Reflective, N.T, 6:00	$H \rightarrow$ Transflective, W.T,6:00
	Type/ Temperature	$D \rightarrow Reflective, N.T, 12:00$	$K \rightarrow$ Transflective, W.T,12:00
	range/ View	$G \rightarrow Reflective, W. T, 6:00$	$C \rightarrow$ Transmissive, N.T,6:00
	direction	J→Reflective, W. T, 12:00	$F \rightarrow$ Transmissive, N.T, 12:00
		$B \rightarrow$ Transflective, N.T,6:00	I→Transmissive, W. T, 6:00
		$E \rightarrow$ Transflective, N.T.12:00	$L \rightarrow$ Transmissive, W.T,12:00
8	Special Code	V : Built in Negative voltage	Z:ICNT7086
		#:Fit in with the ROHS Directi	ons and regulations
			-

2.Precautions in use of LCD Modules

- (1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6)Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.

(8) Winstar have the right to change the passive components, including R3,R6 & backlight adjust resistors. (Resistors, capacitors and other passive components will have different appearance and color caused by the different supplier.)

(9)Winstar have the right to change the PCB Rev. (In order to satisfy the supplying stability,

management optimization and the best product performance...etc, under the premise of not affecting the electrical characteristics and external dimensions, Winstar have the right to modify the version.)

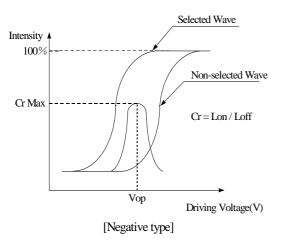
Item	Dimension	Unit			
Number of Characters	240 x 64dots	_			
Module dimension	180.0 x 65.0 x 15.6 (MAX)	mm			
View area	133.0 x 39.0	mm			
Active area	127.16 x 33.88	mm			
Dot size	0.49 x 0.49	mm			
Dot pitch	0.53 x 0.53	mm			
LCD type	STN Positive, Yellow Green Transflective (In LCD production, It will occur slightly color difference. We can only guarantee the same color in the same batch.)				
Duty	1/64				
View direction	6 o'clock				
Backlight Type	LED Yellow Green				

3.General Specification

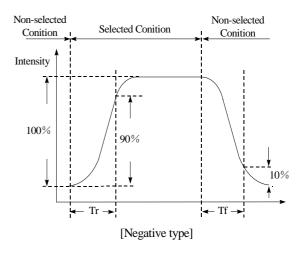
4.Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	T _{OP}	-20	-	+70	°C
Storage Temperature	T _{ST}	-30	_	+80	°C
Operating Humidity (*1)			75	80	%
Input Voltage	VI	Vss		V _{DD}	V
Supply Voltage For Logic	V _{DD} -V _{SS}	-0.3		+4.5	V
Supply Voltage For LCD	VDD-V0	0	_	15	V
Negative Voltage Output	V_{EE}	_	10		V
LED Forward Current	IF	_	_	1320	mA

*1 : Operating on Humidity 90%, the LCM can stand 96 hours no damage.

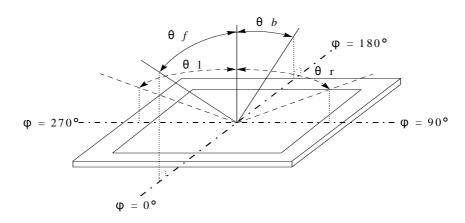

5.Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	—	3.5	3.9	4.4	V
		Ta=-20°C	_			V
Supply Voltage For LCD	V_{DD} - V_0	Ta=25℃	13.6	14.0	14.4	V
		Ta=+70°C	_	—		V
Input High Volt.	V _{IH}		$0.7 V_{DD}$	_	V _{DD}	V
Input Low Volt.	V _{IL}		0		$0.2V_{DD}$	V
Output High Volt.	V _{OH}		$0.7V_{DD}$		V _{DD}	V
Output Low Volt.	V _{OL}		0		$0.2V_{\text{DD}}$	V
Supply Current	I _{DD}	-	—	30	—	mA


6.Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	$(V) \theta$	$CR \ge 2$	20	_	40	deg
view migie	(H) φ	$CR \ge 2$	-30	_	30	deg
Contrast Ratio	CR	_	_	3	_	_
Response Time	T rise	_	—	150	200	ms
	T fall	_		150	200	ms

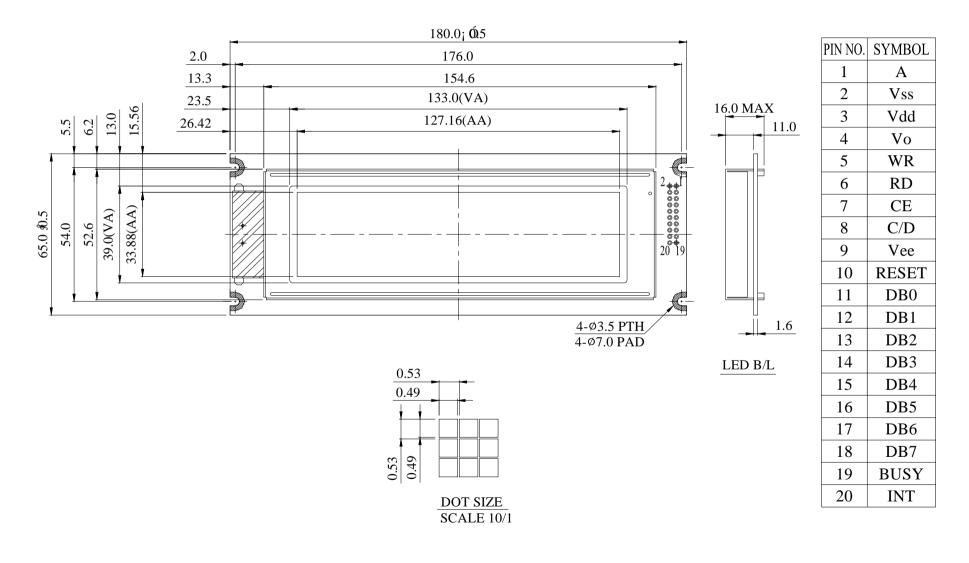
Definition of Operation Voltage (Vop)


Definition of Response Time (Tr , Tf)

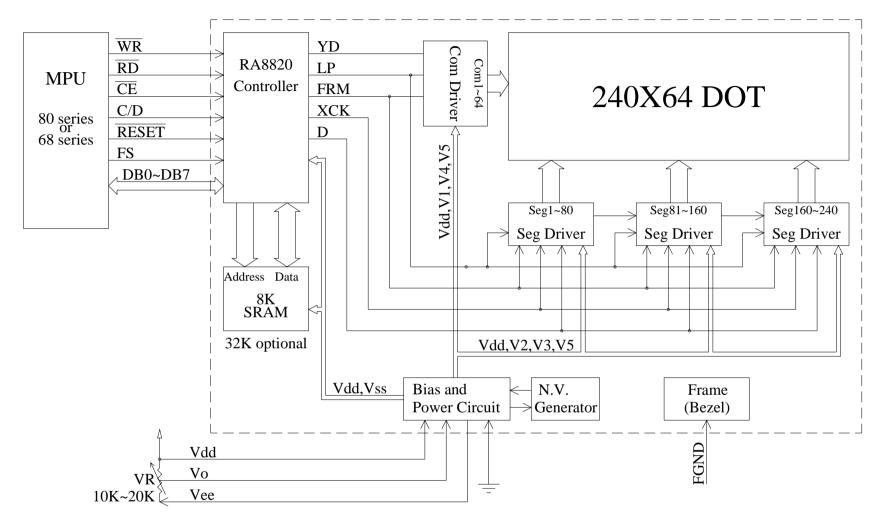
Conditions :

Operating Voltage : Vop Frame Frequency : 64 HZ Viewing Angle(θ , φ): 0° , 0° Driving Waveform : 1/N duty , 1/a bias

Definition of viewing angle($CR \ge 2$)



第7頁,共38頁


7.Interface Description

Pin No.	Symbol	Level	Description
1	А	—	Power Supply For LED +
2	Vss	—	GND
3	Vdd		Power supply
4	Vo		Power supply for LCD driver
5	/WR	L	Data write. Write data into RA8820 when WR = L
6	/RD	L	Data read. Read data from RA8820 when RD = L
7	/CE	L	L : Chip enable
8	C/D	H/L	WR=L, C/D=H : Data write C/D=L: Command Write
9	Vee	—	Negative voltage output
10	/RESET	H/L	H : Normal ; L : Initialize RA8820
11	DB0	H/L	Data bus line
12	DB1	H/L	Data bus line
13	DB2	H/L	Data bus line
14	DB3	H/L	Data bus line
15	DB4	H/L	Data bus line
16	DB5	H/L	Data bus line
17	DB6	H/L	Data bus line
18	DB7	H/L	Data bus line
19	BUSY	H/L	Active high or low busy signal.
			The RA8820 can't be access when BUSY pin is high.
			It's should be connected to MPU I/O input. The MPU have to poll this pin before accessing RA8820.
20	INT		Active high or low Interrupt signal

8.Contour Drawing & Block Diagram

第9頁,共38頁

External contrast adjustment.

9.Regisiter Description

9.1 Register List Table

Reg. No	Reg. Name	R/W	D7	D6	D5	D4	D3	D2	D1	D0
00h	LCR	R/W	PW1	PW2	SR	RTM	CG	DP	DK	DV
08h	MIR	R/W	ABP	CKN	DISP	PLR			CKB1	CKB0
10h	CCR	R/W	ARI	ALG	WDI	WBC	AIX	CP	CK	CSD
18h	CSCR	R/W	CR3	CR2	CR1	CR0	DY3	DY2	DY1	DY0
20h	AWRR	R/W			X5	X4	X3	X2	X1	X0
28h	DWRR	R/W			A5	A4	A3	A2	A1	A0
30h	AWBR	R/W	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
38h	DWBR	R/W	B7	B6	B5	B4	B3	B2	B1	B0
40h	AWLR	R/W			SS5	SS4	SS3	SS2	SS1	SS0
48h	DWLR	R/W			C5	C4	C3	C2	C1	C0
50h	AWTR	R/W	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0
58h	DWTR	R/W	D7	D6	D5	D4	D3	D2	D1	D0
60h	CPXR	R/W			RS5	RS4	RS3	RS2	RS1	RS0
70h	CPYR	R/W	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
80h	BTR	R/W	BT7	BT6	BT5	BT4	BT3	BT2	BT1	BT0
90h	SCCR	R/W	CK7	CK6	CK5	CK4	CK3	CK2	CK1	CK0
A0h	INTR	R/W	BSY	INA	INX	INY	MSZ	MSA	MSX	MSY
B0h	INTX	R/W	-		IX5	IX4	IX3	IX2	IX1	IX0
B8h	INTY	R/W	IY7	IY6	IY5	IY4	IY3	IY2	IY1	IY0
C0h	TPCR	R/W	AZEN	AZOE		ADET	AS3	AS2	AS1	AS0
C8h	TPDR	R	TP7	TP6	TP5	TP4	TP3	TP2	TP1	TP0
D0h	LCCR	R/W	DZEN	DZWE	DRST	DAC4	DAC3	DAC2	DAC1	DAC0
E0h	PDR	R/W	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0
F0h	FCR	R/W	TNS	BNK	RM1	RM0	FDA	ASC	ABS1	ABS0

9.2 Register Description

REG [00h] LCD Controller Register (LCR)

Bit	Description	Text/Graph	Default	Access
	Power Mode	-		
	11: Normal Mode			
	10: Standby Mode			
	01: Sleep Mode			
	00: Off Mode			
	Normal mode: When RA8820 is in normal mode it can			
	execute full			
	functions include RAM read/write, register read/write, LCD display valid			
	signal.			
7-6	Standby mode: When RA8820 is in standby mode, except			
	DDRAM/ROM access function is prohibited, others are		11h	R/W
	working and so			
	does LCD display function.			
	Sleeping mode: When RA8820 is in sleeping mode, the			
	DDRAM/ROM			
	access and LCD display are prohibited, but register access is			
	permitted.			
	Off mode: When RA8820 is in off mode, all above functions			
	enter power off mode, except the wake-up trigger block. If			
	wake-up event occurred,			
	RA8820 would wake-up and return to Normal mode. Software Reset:			
5	1: Reset all registers except flushing RAM		0h	R/W
5	0: Normal operation		011	1.7, 4.4
	Set Auto_reset function			
	When the bit is Enable, if RA8820 doesn't get a full			
4	command or data		0h	R/W
4	within 2msec, then RA8820 will ignore it.		UII	FX/ V V
	1: Enable Auto_reset function			
	0: Disable Auto_reset function			
	Display mode selection			
2	1: Character mode		16	
3	The written data will be treated as a GB/BIG/ASCII code. 0: Graphical mode		1h	R/W
	The written data will be treated as a bit-map pattern.			
	Set Display on or off. The bit can control LCD Driver			
	Interface signals			
2	DISP_OFF signal control	Text/Graph	1h	R/W
_	1: DISP_OFF pin output high			
	0: DISP_OFF pin output low.			
	Blink mode selection			
1	0: Normal display	Text/Graph	0h	R/W
	1: Blink full screen. The blink time is set by CBTR.			
	Inverse mode selection			
0	1: Normal display	Text/Graph	1h	R/W
	0: Inverse full screen. It will cause all data stored in DDRAM			
	inversed.]	l	

REG [10h] Cursor Control Register (CCR)

Bit	Description	Text/Graph	Default	Access
7	Auto Increase Cursor Position in reading DDRAM operation. 1: Enable 0: Disable	Text/Graph	1H	R
6	Chinese/English character alignment 1: Enable 0: Disable The bit only valid in character mode, that can align full-size and half-size mixed font	Text	1H	R/W
5	Store Current Data to DDRAM 1: Store Current Data to DDRAM directly 0: Store Current Data to DDRAM Inversely	Text	1H	R/W
4	Set Bold font (character mode only) 1: Store Data shift 1 + origin data (Black Font) 0: Store Data Normality (origin Font)	Text/Graph	1H	R/W
3	Auto Increase Cursor Position in writing DDRAM operation. 1: Enable 0: Disable	Text/Graph	ОH	R/W
2	Cursor display control 1: Set cursor on 0: Set cursor off	Text/Graph	ОH	R/W
1	Cursor blink control 1: blink Cursor. The blink time is determined by register[80h] BTR 0: Normal	Text/Graph	OH	R/W
0	Set Cursor width 1: Cursor width is auto adjust by input data 0: Cursor is fixed at one byte width	Text	ОH	R/W

REG [20h] Active Window Right Register (AWRR)

Bit	Description	Default	Access
7-6	Reserved	0H	R
5-0	Active window right position → Segment-Right	Table 10-2	R/W

Note: REG [20h, 30h, 40h, 50h] are used for the function of change line and page. Users can use these four Registers to set a block as an active window. When data goes beyond the right boundary of active window (The value is set by REG [20h, 30h, 40h, 50h]), then the cursor will automatically change the line and write in data continuously. It means the cursor will move to the left boundary of active window, which is set by REG [40h]. When the data comes to the bottom line of the right side (set by REG [20h and 30h]), then the cursor will be moved to the first line of the left side automatically and continue to put in data. (set by REG [40h, 50h]).

REG [30h] Active Window Left Register (AWBR)

Bit	Description		Default	Access
7-0	Active window bottom position	Common-Bottom	Table 10-1	R/W

REG [40h] Active Window Bottom Register (AWLR)

Bit	Description		Default	Access
7-6	Reserved		0H	R
5-0	Active window left position	Segment-Left	0H	R/W

REG [50h] Active Window Top Register (AWTR)

Bit	Description	Default	Access
7-0	window top position 🗲 Common-Top	0H	R/W

REG [60h] Cursor Position X Register (CPXR)

Bit	Description	Default	Access
7-6	Reserved	0H	R
5-0	Set the cursor Segment address	0H	R/W

REG [70h] Cursor Position Y Register (CPYR)

Bit	Description	Default	Access
7-0	the cursor Common address	0H	R/W

REG [80h] Cursor Blink Time Register (BTR)

Bit	Description	Text/Graph	Default	Access
7-0	The Blink one unit time scale is the frame rate scale Blinking time = Bit [70] x (1/Frame_Rate) Frame Rate setup depends on the LCD panel.	Text/Graph	23H	R/W

REG [90h] Shift Clock Control Register (SCCR)

Bit	Description	Default	Access
7-0	Setup the XCK signal cycle OCKR = (SCLK*4)/(Column*Row*FRS) SCLK: System Clock (Hz) DBW: 4(Bit) Column: Column of Display Screen (Pixel) Row: Row of Display Screen (Pixel) FRS: Frame Rate/Sec Note: OCKR initial setup OCKR=MA[70] during reset period.	Table10-2	R/W

REG [A0h] Interrupt Setup & Status Register (INTR)

Bit	Description	Default	Access
7	Busy Status 1: RA8820 is busy. The MPU have to wait until Busy Status is released 0: RA8820 is idle ready for MPU access.	Table10-2	R/W
6	Touch Panel detect 1: Touch Panel touched 0: Touch Panel untouched	ОH	R
5	Cursor Column status 1: The Cursor Column is equal to INTX 0: The Cursor Column is not equal to INTX	ОН	R
4	Cursor Row status 1: The Cursor Row is equal to INTY 0: The Cursor Row is not equal to INTY	ОН	R
3	Busy interrupt mask 1: Enable Busy to generate Interrupt output 0: Disable Busy to generate Interrupt output	ОН	R
2	Touch Panel interrupt mask 1: Generate interrupt output if touch panel was detected. 0: Don't generate interrupt output if touch panel was detected.	ОН	R/W
1	INTX event occur INT or not 1: Enable INTX Interrupt 0: Disable INTX Interrupt	ОН	R/W
0	Set INTY occur INT or not 1: Enable INTY Interrupt 0: Disable INTY Interrupt	ОH	R/W

REG [B0h] Interrupt Column Setup Register (INTX)

Bit	Description	Default	Access
7-6	Reserved	0H	R
5-0	Setup interrupt column address If Cursor Position X Register (CPXR)=INTX, a interrupt has occurred	27H	R/W

REG [B8h] Interrupt Row Setup Register (INTY)

Bit	Description	Default	Access
7-0	Setup interrupt Row address	EFh	R/W
7-0	If Cursor Position Y Register (CPYR)=INTY, a interrupt has occurred		

REG [C8h] Touch Panel Data Register (TPDR)

Bit	Description	Default	Access
7-0	This register keeps the touch panel active position (Column, Row)	0H	R

REG [D0] LCD Contrast Control Register (LCCR)

Bit	Description	Default	Access
7	LCD contrast control 1: Disable 0: Enable	1H	R/W
6	LCD contrast control DAC write enable 1: Don't allow MPU to write data to DAC Bit [4~0] 0: Allow MPU to write data to DAC Bit [4~0]	1H	R/W
5	Reset LCD contrast control function 1: Normal operation 0: DAC is reset. Set the lout to 0 uA	1H	R/W
4-0	Set the LCD Brightness Control lout Value (DAC Bit [4~0]) 00000b 0μA (Min. Current) : : 11111b 1mA (Max. Current)	он	R/W

REG [E0h] Pattern Data Register (PDR)

Bit	Description	Text/Graph	Default	Access
7-0	Setup the Pattern Data When REG[F0h] bit3 is '1', it will read the data from Register [E0h] and fillthe whole DDRAM. After the movement of filling the Active window, REG[F0h] bit3 will become "0".	Graph	ОH	R/W

REG [F0h] Font Control Register (FCR)

Bit	Description	Text/Graph	Default	Access
7	External Character ROM control 1: Enable. 0: Disable.		01H	R/W
6	ROM BANK Selection 1: External Font ROM select 0: Internal Font ROM select		00H	R/W
5-4	Set Font ROM Translate 01: Support BIG5 font ROM 10: Support GB font ROM		00H	R/W
3	Fill Data to DDRAM 1: no action 0: Fill Data to DDRAM Enable	Graph	00H	R/W
2	Font ROM range select 1: Enable 0: Disable When the bit is '1', input data is ASCII code When the bit is '0', the input data <a0h as="" ascii="" code<br="" is="" it="">the input data≡A0h it is as GB/BIG5 code Enable CLK_OUT1: Active_ window</a0h>		00H	R/W
1-0	ASCII Block Select bit 1~0 0 0: Map to ASCII block 0 0 1: Map to ASCII block 1 1 0: Map to ASCII block 2 1 1: Map to ASCII block 3		00Н	R/W

REG [08h] Misc. Register (MIR)

Bit	Description	Default	Access
7	Reserved	1H	R
6	ENABLE CLK OUT 1: Enable CLK_OUT 0: Disable CLK_OUT	1H	R/W
5	Window Mode Select 1: Active_ window 0: Display_ window	ОН	R/W
4	Set INT and Busy Polarity 1: Set High_ Active mode 0: Set Low_ Active mode	OН	R/W
3-2	Reserved	0H	R
1-0	Clock speed selection 0 0 : 1MHz 0 1 : 2MHz 1 0 : 4MHz 1 1 : 8MHz		

REG [18h] Cursor Size Control Register (CSCR)

Bit	Description	Text/Graph	Default	Access
7-4	Setup the height of cursor (default value is 2)	TEXT	0010H	R/W
3-0	Setup the distance of row to row	TEXT	0010H	R/W

REG [28h] Display Window Right Register (DWRR)

Bit	Description	Default	Access
7-6	Reserved	0H	R/W
5-0	Set Display Window Right position Segment-Right Segment-Right = (Segment Number / 8) $- 1$ If LCD panel size is 320*240, the value of the register is: (320 / 8) - 1 = 27h	ОН	R/W

Note: REG[28h, 38h, 48h, 58h] is used to set Display Window . Users can set the viewing scope of Display RAM. Column

Address can be set between 0~39, and Row Address can be set between 0~239. Users can set start and end address

first, and then by adding shift function to present the effect of rolling.

REG [38] Display Window Bottom Register (DWBR)

Bit	Description	Default	Access
7-0	Display Window Bottom position Common-Bottom Common_Bottom = LCD Common Number -1 If LCD Panel is 320x240, the value of the register is: 240 - 1 = 239 = EFh	Table 10-2	R/W

REG [48] Display Window Left Register (DWLR)

Bit	Description	Default	Access
7-0	Display Window Left position → Segment-Left Usually set "00h".	0Н	R/W

REG [58] Display Window Top Register (DWTR)

Bit	Description	Default	Access
7-0	Display Window Top position → Common-Top Usually set "00h".	0H	R/W

NOTE:

Please look at this example of how to set the default value of the Register.

1. AWRR \geq CPXR \geq AWBR, AWRR \geq INTX \geq AWBR

2. AWLR \geq CPYR \geq AWTR, AWLR \geq INTY \geq AWTR

10. Function Description

10.1 MPU Interface

The RA8820 enters 8-bit bus interface mode when the SYS_DB pin is set high. The RA8820 can interface with the MPU via an I/O port. Instruction is executed when data is written into the register. In this case, only the register can be read (busy check, etc). In this case, check the busy flag when accessing (polling), or appreciate connect Busy pin to MPU Interrupt with the exact polarity it can useful reduce MPU polling effort, or insert an interval considering the execution time and perform the next access when the internal process has completely finished. The instruction execution time depends on the RA8820 operation frequency. When using the internal oscillator circuit of the RA8820, the instruction time will change as the oscillation frequency does.

The RA8820's MPU interface support Intel (8080) or Motorola (6800) 4/8 bits data bus, RA8820 lead the setup data while reset period via LD [7..0].

Bit	Signal	Description	"1" mean	"0" mean	
7	SYS_MI	MPU Type	M6800	18080	
6	SYS_DB	MPU Data Bus	8_bit	4_bit	
5	SYS_FQ	Clock Select	PLL_CLK	RC Osc_CLK	
4					
3	SYS_LD	LCD Data Bus	8_Bit	4_Bit	
2	SYS_PLR	RS Polarity Select	Note1	Note2	
1	X1	Operation	Set → "1"		
0	X2	Mode	Set → 1		

Table 10-1 Hardware Pin Setup Description

Note1: '1' indicate DB[7..0] are display data; '0' indicate DB[7..0] are register data Note2: '1' indicate DB[7..0] are register data; '0' indicate DB[7..0] are display data

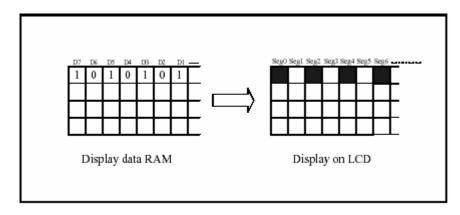
10.2 Command/Decoder register circuit

This circuit store and implement the command from MPU Interface. The Register [00h, 08h, 10h] treats the whole chip and cursor setup. The Register [20h, 30h, 40h, 50h] can setup the work range maximum and minimum limit. When appreciate setup with Register [10h] bit3, [F0h] bit3 and [60h, 70h] the RA8820 can offer powerful variety meet various application.

The Register [28h, 38h, 48h, 58h] can satisfy various LCD display from (0,0)~(320,240) pixels. Powerful INT via Register [A0h, B0h, B8h] reduce MPU polling cycle to Interrupt interactive utility. Therefore we can use low end CPU to cost down and help the whole system reduce BOM cost.

10.3 Busy Flag

The Busy flag is set when the RA8820 is too busy to write RAM data. During operation, RA8820 can accept as normal operation expect write data to display data RAM. RA8820 accepts read status instruction only. The busy flag signal is output at pad DB7 when read status is issued. If the cycle time is correct, the microprocessor need not check the flag before issuing a command. This can greatly improve the microprocessor performance.


10.4 INT

When appreciate setup register [A0h, B0h, B8h]. RA8820 can assert INT signal which the cursor go to the interrupt position, it is useful to help system developer to apply two or more RA8820 to driver large panel. example: Panel size is 640×480→Column×Row.

10.5 Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores bit mapping pixel data and display attribute codes for displaying data. A fullsize font is displayed using two bytes, and a half-size font is displayed using one byte. DDRAM displays only that data stored within the range corresponding to the DDRAM. Data stored outside the range is ignored. Refer to combined display of full-size and half-size characters for details on character codes stored in DDRAM.

The display data RAM stores pixel data for LCD. It is a 240 column by 320 row addressable array maximum. The time required to transfer data is very short. The microprocessor writes and reads data to/from the RAM through data bus. As the LCD controller operates independently, data can be written into the RAM at the same time as the data is being displayed, without the LCD to flicker. If apply to the character/graphical mix mode. RA8820 can easy store and display the data/picture which user desired.

Figure 10-1 Display data to LCD map

10.6 Display Timing Generator

This section explains how the display timing generator circuit operates.

10.6.1 Signal Generation to Line Counter and Display Data Latch Circuit

The display data clock (XCK) generates a clock to the line counter and a latch signal to the display data latch circuit. The line address of the display RAM is generated in synchronization with the display clock. Display data is latched by the display data latch circuit in synchronization with the display clock and output to the Column LCD drive data bus. The display data is send to the LCD drive circuit completed independent of access to the display data RAM from the microprocessor.

10.6.2 LCD AC Signal Generation

The display data clock generates an LCD AC signal (FRM). The FRM causes the LCD drive circuit to generate an AC drive waveform.

10.6.3 Row Timing Signal Generation

The display clock generates an internal Row timing signal and a start signal (YD) to the Row driver. A Display clock resulting from frequency division of an oscillation clock is output from the XCK pad.

When an AC signal (FRM) is switched, a high pulse is output as a YD output at the turning edge of the previous display clock.

10.7 ROM

RA8820 embedded 512KByte Font ROM also provide external 512KByte Font ROM Interface can use put the standard and special fonts of BIG5, GB, and ASCII code. It can support the display 16x16 dot for full-size fonts consisting of Chinese, 8x16 dots for half-size fonts of alphanumeric characters and symbols in the same display. For example, when CPU sends Big5 code (2 Bytes), RA8820 will read Font code (32 Bytes) from ROM, which is matching with Big5 code, and then deliver them to DDRAM.

M	A[118]	Seg×Com (Chi-Font)	Seg×Com (Pixel)	REG[20h]	REG[30h]
0	0000	20×15	320×240	27	EF
1	0001	20×10	320×160	27	9F
2	0010	20×8	320×128	27	7F
3	0011	20×4	320×64	27	3F
4	0100	16×8	256×128	1F	7F
5	0101	15×10	240×160	1D	9F
6	0110	15×8	240×128	1D	7F
7	0111	15×4	240×64	1D	3F
8	1000	10×10	160×160	13	9F
9	1001	10×8	160×128	13	7F
Α	1010	10×4	160×64	13	3F
В	1011	10×2	160×32	13	1F
С	1100	12×4	192×64	17	3F
D	1101	8×8	128×128	0F	7F
Е	1110	8×4	128×64	0F	3F
F	1111	8×2	128×32	0F	1F

Table106-2 Panel Size Initial Setup

Note: When register [20h, 30h] are reset we can utilize Table10-2 to select panel size

10.9 DAC

RA8820 includes one 5 bit DAC, providing current to make contrast adjustments. Figure 10-4 is the circuit for voltage adjustment.

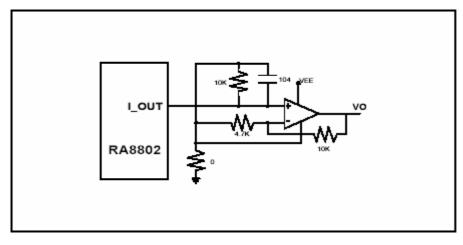


Figure 10-4 DAC Current to Voltage Regulator

11. Function Application

11.1 Combined Display of Full-Size and Half-Size Characters

The Figure 11-1 shows the ability of RA8820 to show Full-Size and Half-Size Characters

Figure 11-1 Combined Display of Full-Size and Half-Size Characters

Table 11-1 is the character code of Full-Size and Half-Size showed in Figure 11-1.

Display Character	Character Code	Display Character	Character Code	Display Character	Character Code
瑞	B7E7	Е	45	0	6F
佑	A6F6	С	43	с	63
科	ACEC	Н	48	m	6D
技	A7DE	N	4E	t	74
股	AAD1	L	4C	電	20B7
份	A5F7	G	47	話	71B8
有	A6B3	Y	59	8	38
限	ADAD		2E	6	36
公	A4BD	網	BAF4	3	33
司	A571	頁	ADB6	5	35
R	52	:	3A	7	37
Α	41	w	77	傳	20B6
Ι	49	r	72	真	C7AF
0	4F	a	61		
Т	45	i	69		

Table 11-1 Character Code comparison table (BIG5)

11.2 Characteristic Bold Display Function

The figure 11-2 is character bold display and Register setup.

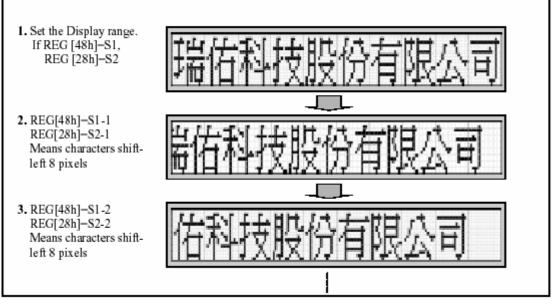
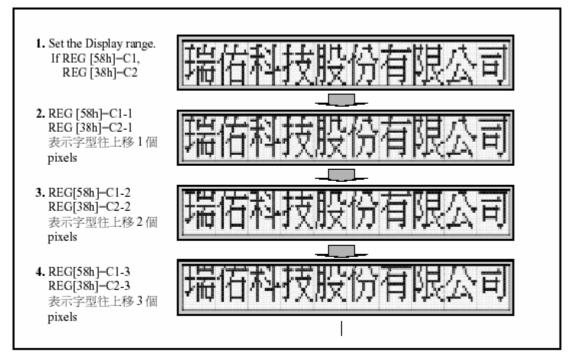


Figure 11-2 Character Bold Display

11.3 Horizontal Smooth Scroll

Data shown on the display can be scrolled horizontally to the left for a specified number of dots. The number ofdots are

set in scroll control register [28, 48h].

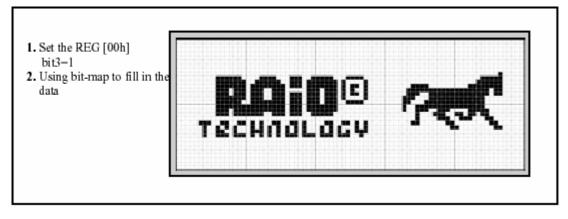


Note: One square means 16*16 pixels

Figure 11-3 Horizontal Smooth Scroll

11.4 Vertical Smooth Scroll

Like Figure 11-4 shows, it can set Active Window. Then setting register to achieve the function of rolling up and down.



Note: One square means 16*16 pixels

Figure 11-4 Vertical Smooth Scroll

11.5 Graphics Display Function

Figure11-5 shows the function and the value that register need be set under graphics display.

Figure 11-5 Graphics Display

11.6 Blinking Display

Figure11-6 shows the function and the value that register need to be set under blinking display.

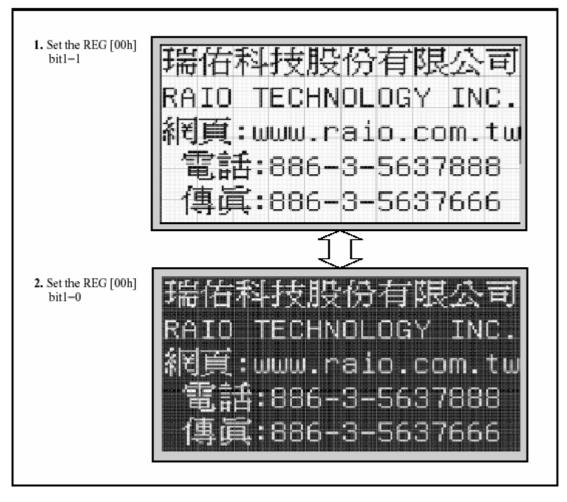
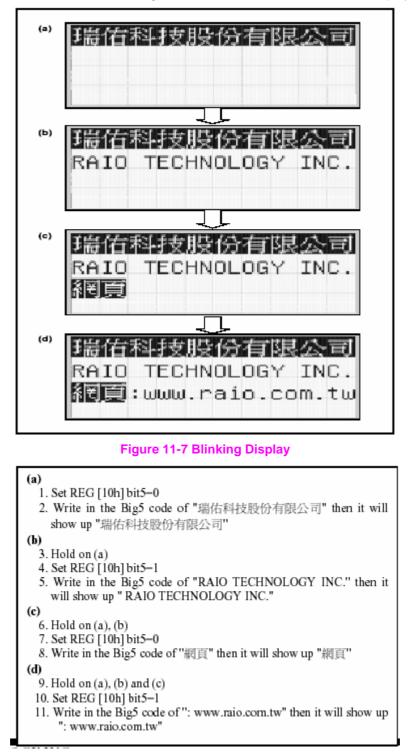



Figure 11-6 Blinking Display

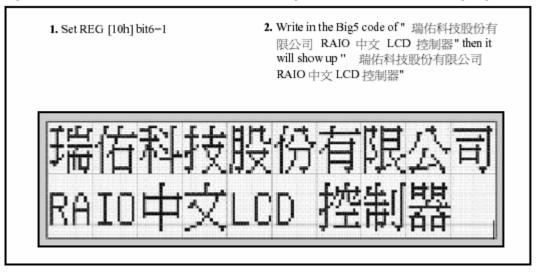

11.7 Black-white Display

Figure11-7shows the function and the value that register need to be set under black-white display.

$11.8\ {\rm Align}$ the Chinese/English Font

Figure11-8 shows the function and the value that register need to be set under aligning the Chinese/English Font,

Figure 11-8 Align the Chinese/English Font

11.9 Non_Align the Chinese/English Font

Figure11-9 shows the function and the value that register need to be set under Non_Align the Chinese/English Font.

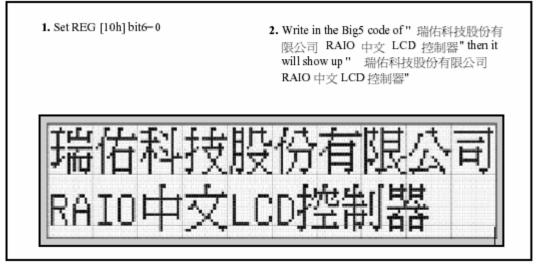
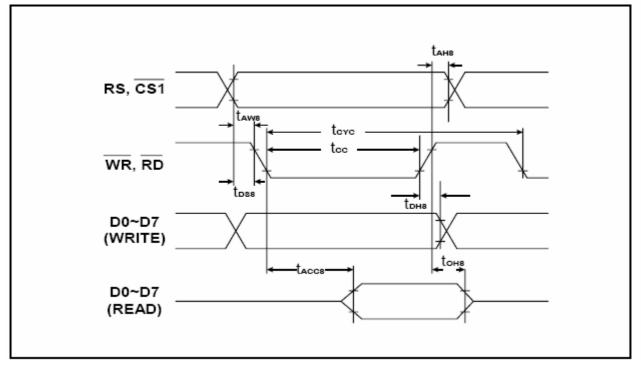
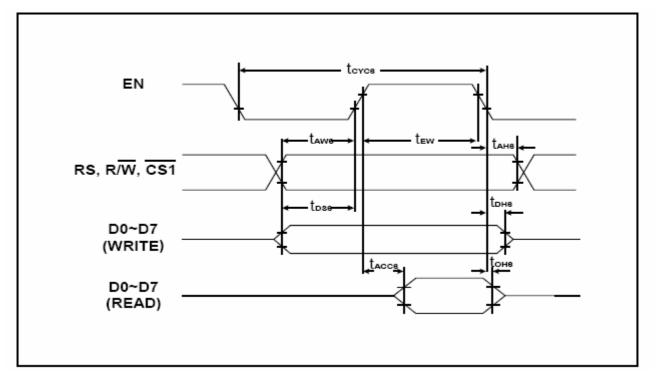



Figure 11-9 Non_Align the Chinese/English Font


12 Timing Characteristics

12.1 MCU Interface of 8080 Series

Figure 12-1 8-bit 8080 MCU Access RA8820 Register

Signal	Symbol	Parameter	Rating		Unit	Condition
Signal	Symbol	Falameter	Min	Max	Onit	condition
RS, CS1#	t _{AH8}	Address hold time	10		ns	System Clock:
K3, C31#	t _{Aw8}	Address setup time	63		ns	8MHz
WR#, RD#	t _{cyc}	System cycle time	800		ns	Voltage: 3.3V
WR#, RD#	t _{cc}	Strobe pulse width	400		ns	
	t _{DS8}	Data setup time	63		ns	
D0 to D7	t _{DH8}	Data hold time	10		ns	
	t _{ACC8}	RD access time		330	ns	
	t _{она}	Output disable time	10		ns	

Figure 12-2 8-bit 6800 MCU Access RA8820 Register

Signal	Symbol	Parameter	Rating		Unit	Condition
Signal	Symbol	rarameter	Min	Max	Unit	Condition
A0, R/W#,	t _{ah6}	Address hold time	10		ns	System Clock:
CS1#	t _{Aw6}	Address setup time	63		ns	8MHz
001#	t _{cyce}	System cycle time	800		ns	Voltage: 3.3V
	t _{DS6}	Data setup time	63		ns	
D0 to D7	t _{DH6}	Data hold time	10		ns	
001007	t _{acce}	Access time		330	ns	
	t _{оне}	Output disable time	10		ns	
EN	t _{ew}	Enable pulse width	400		ns	

13. Microprocessor Interface

13.1 8080-series microprocessors (4/8-bit)

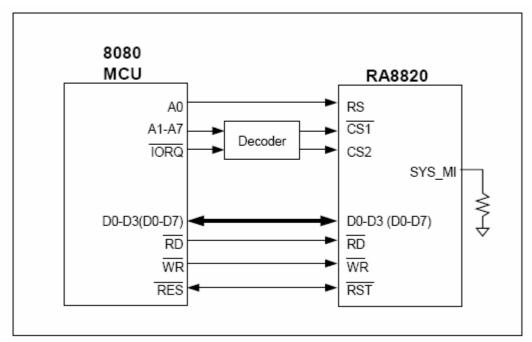
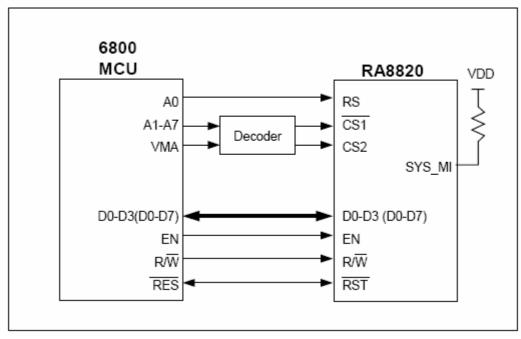



Figure 13-1 The diagram of 8080 (4/8-bit) MCU and RA8820

13.2 6800-series microprocessors (4/8-bit)

The diagram of 6800 (4/8-bit) MCU and RA8820

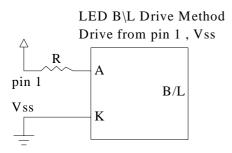
14.Reliability

	Environmental Test							
Test Item	Content of Test	Test Condition	Note					
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2					
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C 200hrs	1,2					
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70℃ 200hrs						
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1					
High Temperature/ Humidity Operation	The module should be allowed to stand at 60 $^{\circ}C$,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60℃,90%RH 96hrs	1,2					
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation $-20^{\circ}C$ $25^{\circ}C$ $70^{\circ}C$ 30min 5min 30min 1 cycle	-20°C /70°C 10 cycles						
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude : 1.5mm Vibration Frequency : 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3					
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1 .5kΩ CS=100pF 1 time						

Content of Reliability Test (wide temperature, -20°c~70°C)

Note1: No dew condensation to be observed.

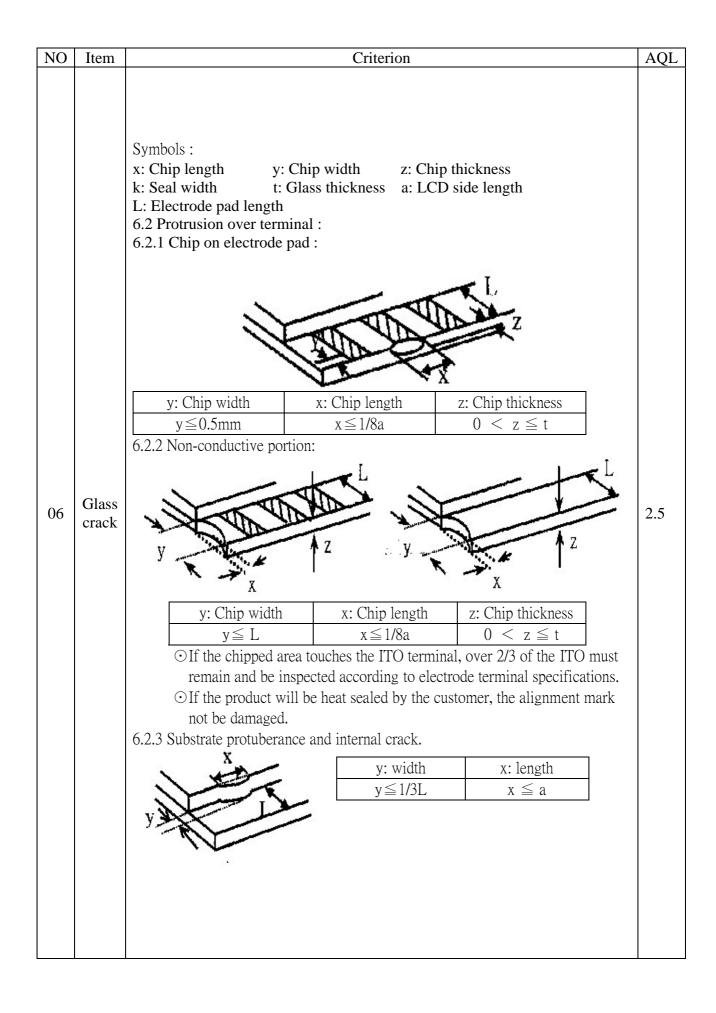
Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.


Note3: The packing have to including into the vibration testing.

15.Backlight Information

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED	360	450	675	mA	V=4.1V
Supply Voltage	V	4.0	4.1	4.3	V	—
Reverse Voltage	VR	-	—	8	V	_
Luminous Intensity	IV	180	216	_	CD/M ²	ILED=450mA
Wave Length	λρ	—	568	—	nm	ILED=450mA
Life Time	-	_	100000	_	Hr.	ILED≦450mA
Color	Yellow Gre	en	1	1	1	•

Specification


Note: The LED of B/L is drive by current only, drive voltage is for reference only. drive voltage can make driving current under safety area (current between minimum and maximum).

16. Inspection specification

NO	Item	Criterion	AQL			
01	Electrical Testing	 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character , dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 LCD viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect. 				
02	Black or white spots on LCD (display only)	 2.1 White and black spots on display ≤0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm 				
03	LCD black spots, white spots, contamination	3.1 Round type : As following drawing $\Phi = (x + y) / 2$ $\Phi \le 0.10$ Acceptable Q TY $\Phi \le 0.10$ Accept no dense $0.10 < \Phi \le 0.20$ 2 $0.20 < \Phi \le 0.25$ 1 $0.25 < \Phi$ 0 3.2 Line type : (As following drawing)	2.5			
	(non-display)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5			
04	Polarizer bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ Acceptable Q TY $\Phi \leq 0.20$ Accept no dense $0.20 < \Phi \leq 0.50$ 3 $0.50 < \Phi \leq 1.00$ 2 $1.00 < \Phi$ 0Total Q TY3	2.5			

05 Scratches Follow NO.3 LCD black spots, white spots, contamination 05 Scratches Follow NO.3 LCD black spots, white spots, contamination Symbols Define: x: Chip length y: Chip width z: Chip thickness x: Seal width t: Glass thickness a: LCD side length L: Electrode pad length: 6.1 General glass chip : 6.1.1 Chip on panel surface and crack between panels: Image: Chipped glass Image: Chip thickness y: Chip width x: Chip length Z < Chip thickness y: Chip width x: Chip length 2.5 06 Chipped glass Image: Chip thickness y: Chip width x <: Chip length 06 Chipped glass Image: Chip thickness y: Chip width x : Chip length Image: Chipped glass Image: Chip thickness y: Chip width x : Chip length Image: Chipped glass Image: Chip thickness y: Chip width x : Chip length 06 Chipped glass Image: Chip thickness y: Chip width x : Chip length 01 ft there are 2 or more chips, x is total length of each chip. 6.1.2 Corner crack: Image: Chip width x : Chip length Image: Chip thickness	NO	Item	Criterion	AQL
$06 \begin{array}{ c c c c c c } \hline & x: Chip length & y: Chip width & z: Chip thickness \\ k: Seal width & t: Glass thickness & a: LCD side length \\ L: Electrode pad length: \\\hline & 6.1 General glass chip : \\\hline & 6.1.1 Chip on panel surface and crack between panels: \\\hline & \hline $	05	Scratches		
		Chipped	Symbols Define: x: Chip length y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: LCD side length L: Electrode pad length: 6.1 General glass chip : 6.1.1 Chip on panel surface and crack between panels: Image: Chip thickness y: Chip width x: Chip length Z: Chip thickness y: Chip width x: Chip length Z = 1/2t Not over viewing area x ≤ 1/8a I/2t < z ≤ 2t	2.5

第 33 頁,共 38 頁

NO	Item	Criterion	AQL
07	Cracked glass	The LCD with extensive crack is not acceptable.	2.5
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 	0.65 2.5 0.65
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65
10	PCB \ COB	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down. 10.9 The Scraping testing standard for Copper Coating of PCB 	 2.5 2.5 0.65 2.5 0.65 0.65 2.5 2.5 2.5 2.5
11	Soldering	 11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB. 	2.5 2.5 2.5 0.65

NO	Item	Criterion	AQL
12	General appearance	 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.8 Pin type must match type in specification sheet. 12.9 LCD pin loose or missing pins. 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet. 	2.5 0.65 2.5 2.5 2.5 2.5 2.5 0.65 0.65 0.65 0.65

17. Material List of Components for RoHs

1. WINSTAR Display Co., Ltd hereby declares that all of or part of products (with the mark "#"in code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: The Harmful Material List

Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs
Limited Value	100 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm
Above limited value is set up according to RoHS.						

2.Process for RoHS requirement :

(1) Use the Sn/Ag/Cu soldering surface ; the surface of Pb-free solder is rougher than we used before.

(2) Heat-resistance temp. :

Reflow : 250°C,30 seconds Max. ;

Connector soldering wave or hand soldering : 320°C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : 235 ± 5 °C ;

Recommended customer's soldering temp. of connector : 280°C, 3 seconds.

18. Recommendable storage

- 1. Place the panel or module in the temperature $25^{\circ}C \pm 5^{\circ}C$ and the humidity below 65% RH
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module

LCM Sample Estimate Feedback Sheet Module Number : Page: 1 **1** • <u>Panel Specification</u> : 1. Panel Type : Pass \square NG, 2. View Direction : Pass NG ,_____ 3. Numbers of Dots : Pass □ NG , _____ 4. View Area : □ NG ,_____ Pass 5. Active Area : Pass □ NG ,_____ □ NG ,_____ 6. Operating Temperature : Pass 7. Storage Temperature : Pass □ NG ,_____ 8. Others : **2** • <u>Mechanical Specification</u> : □ NG ,_____ 1. PCB Size : Pass □ NG ,_____ 2. Frame Size : Pass □ NG ,_____ 3. Materal of Frame : Pass 4. Connector Position : Pass \square NG, 5. Fix Hole Position : Pass \square NG, 6. Backlight Position : Pass □ NG ,_____ 7. Thickness of PCB : Pass \square NG, 8. Height of Frame to PCB : Pass \square NG, 9. Height of Module : Pass □ NG ,_____ 10. Others : □ NG ,_____ Pass **3** • Relative Hole Size : 1. Pitch of Connector : Pass □ NG ,_____ 2. Hole size of Connector : Pass □ NG ,____ 3. Mounting Hole size : Pass □ NG ,_____ 4. Mounting Hole Type : Pass □ NG ,_____ 5. Others : Pass □ NG ,_____ 4 · <u>Backlight Specification</u> : 1. B/L Type :] NG ,_____ Pass 2. B/L Color : NG ,____ Pass 3. B/L Driving Voltage (Reference for LED Type) : Pass \square NG, 4. B/L Driving Current : Pass \square NG, □ NG ,_____ 5. Brightness of B/L: Pass □ NG ,_____ 6. B/L Solder Method : Pass 7. Others : □ NG ,_____ Pass >> Go to page 2 <<

第 37 頁,共 38 頁

Module Number :

5 <u>Electronic Characteristics of Module</u> :

Pass

Pass

Pass

- 1. Input Voltage :
- 2. Supply Current :
- 3. Driving Voltage for LCD : \Box Pass
- 4. Contrast for LCD :
- 5. B/L Driving Method : \Box Pass
- 6. Negative Voltage Output : 🗌 Pass
- 8. LCD Uniformity :

6 · <u>Summary</u> :

Page: 2

□ NG ,
🗌 NG ,
🗌 NG ,
□ NG ,
🗌 NG ,
\square NG,

Sales signature : _____

Customer Signature : _____

Date	:	/	/	