

型号:ZX0802B

2009年3月15日

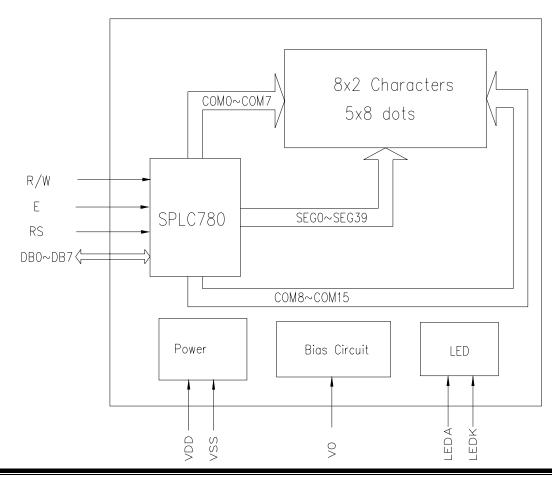
北京市海淀区中关村大街32号和盛大厦811室

电话:(86)-010-52926620 传真:(86)-010-52926621

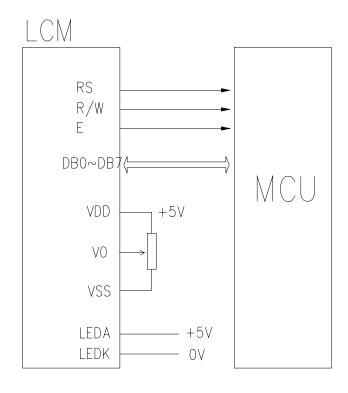
企业网站:http://www.zxlcd.com

RECORDS OF REVISION

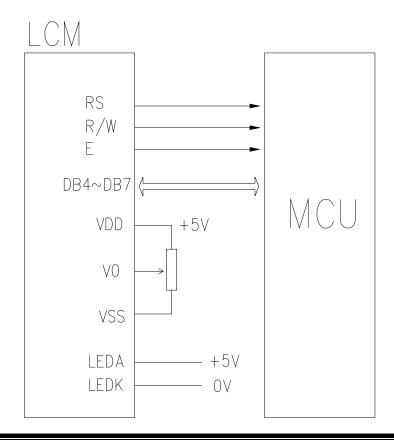
DATE	REVISED NO.	REVISED DESCRIPTIONS	PREPARED	CHECKED	APPROVED
June 25, 2007	1.00	FIRST ISSUE	zdx		

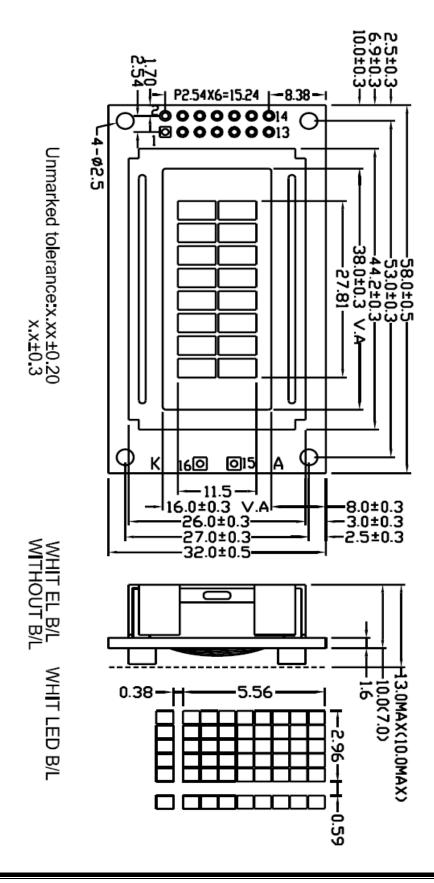

CONTENTS

1.	FEATURES	1
2.	BLOCK DIAGRAM &APPLICATION CIRCUIT	1
3.	OUTLINE DIMENSIONS	3
4.	ABSOLUTE MAXIMUM RATING	4
5.	ELECTRICAL CHARACTERISTICS	4
6.	OPTICAL CHARACTERISTICS	5
7.	TIMING CHARACTERISTICS	6
8.	FUNCTIONAL DESCRIPTIONS	9
9.	CHARACTER GENERATOR ROM	19
10.	INTERFACE PIN CONNECTIONS	20
11.	RELIABILITY	21
12.	QUALITY GUARANTEE	22
13.	INSPECTION CRITERIA	23
14.	PRECAUTIONS FOR USING LCD MODULES	24
15.	USING LCD MODULES	25


1. FEATURES:

ITEM	STANDARD VALUE	UNIT
Display Type	5×8 (1 Cursor) dots, 8×2 Characters	-
LCD Type	□STN, YELLOW-GREEN, Transflective, Position	-
	■STN, BLUE , Transmissive, Negative	
	□FSTN, Transflective, Position	
LCD Duty	1/16	-
LCD Bias	1/5	-
Viewing Direction	6:00	-
Backlight Type	□LED(Yellow-Green)	-
	■LED(White)	
Interface	6800 Series 8bit/4bit	-
Driver IC	SPLC780	-
Module Dimension	58.0(W) X 32.0(H) X13(MAX)(T)	mm
Effective Display Area	27.81(W) X11.5(H)	mm
Character Size	2.96(W) X5.56(H)	mm
Character Pitch	3.55(W) X 5.94(H)	mm


2. BLOCK DIAGRAM & APPLICATION CIRCUIT:

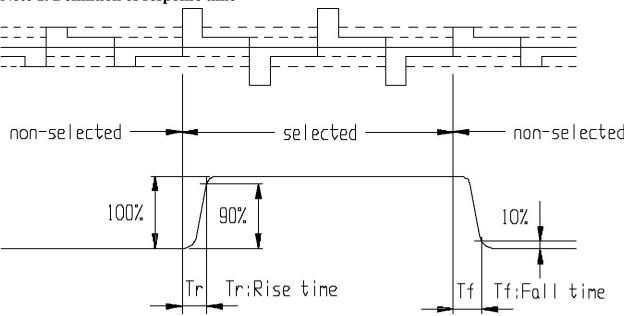

8bit Application

4bit Application

3. OUTLINE DIMENSIONS

4. ABSOLUTE MAXIMUM RATING

ITEM	SYMBOL	CONDITION	STA	UNIT		
I I EIVI	STIVIBOL	CONDITION	MIN	TYP	MAX	CIVIT
POWER SUPPLY FOR LOGIC	VDD	Ta=25°C	-0.3	_	7.0	V
INPUT VOLTAGE	VIN	Ta=25°C	-0.3	_	VDD+0.3	V
Module OPERATION TEMPERATURE	TOPR		-20	_	+70	$^{\circ}\mathbb{C}$
Module STORAGE TEMPERATURE	TSTG		- 30		+80	$^{\circ}\mathbb{C}$
Storage Humidity	H_D	Ta < 40 °C	-		90	%RH


5. ELECTRICAL CHARACTERISTICS

ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage (logic)	VDD-VSS	-	4.5	5.0	5.5	V
		STN, YELLOW-GREEN		4.8		
Supply Voltage (LCD)	VDD-V0	Ta= +25°C STN, BLUE		4.5	-	V
		STN, GREY		4.5		
Input signal voltage	V-IH	VDD=4.5~5.5V	2.2V	-	VDD	V
input signal voltage	V-IL	VDD=4.5~5.0V	-0.3	1	-0.6	V
Output signal voltage	V-OH	VDD=4.5~5.0V	0.9VDD	-	VDD	V
Output signal voltage	VOL	VDD=4.5~5.0V	-	-	0.1VDD	V
Supply Current (logic)	IDD	VDD=5.0V	-	10	15	mA
Backlight Voltage	V-BL	LED(Yellow-Green)		4.2V		V
backlight voltage	V-DL	LED(White)	_	3V	-	V
Backlight Current	I-BL	LED(Yellow-Green)		80		mA
Dacklight Cultent	I-DL	LED(White)		15		IIIA
Backlight Driver Wave				-		kHz
Backlight Brightness						
Backlight Life Time						

6. OPTICAL CHARACTERISTICS

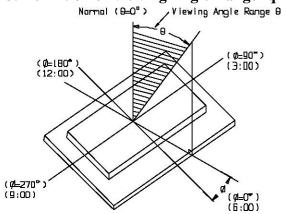
Item	Symbol	Condition	Min	Тур	Max	Unit	Remarks	Note
Response	Tr	25 ℃	-	150	200	ms	-	1
Time	Tf	25 ℃	-	200	250	ms	-	1
Contrast Ratio	Cr	25 ℃	2.0	5.0	-	-	-	2
7 ·			30	-	-	deg	Ø= 90	3
Viewing	θ	Cr≥ 2	30	-	-	deg	Ø = 270	3
Angle Range			35	-	-	deg	$\emptyset = 0$	3
Kange			35	-	-	deg	Ø = 180	3

Note 1. Definition of response time

Note 2. Definition of Contrast Ratio 'Cr'

Brightness of non-selected segment(B2)

Brightness af selected segment(B1)


Brightness curve for non-selected segment

Brightness curve for selected segment

Brightness curve for selected segment

Oriving Valtage

Note 3. Definition of Viewing Angle Range 'q'

7. TIMING CHARACTERISTICS

7.1 AC Characteristics (VDD=2.7V to 4.5V, T_A =25°C)

7.1.1. Internal clock operation

OL		Limit				T . O . III
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
OSC Frequency	F _{osc1}	190	270	350	KHz	VDD = 3.0V, Rf = 75KΩ±2%

7.1.2. External clock operation

01			Limit		11.5	T . C . Put
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
External Frequency	Fosca	125	250	350	KHz	
Duty Cycle		45	50	55	%	
Rise/Fall Time	tr, tf	-	-	0.2	μS	

7.1.3. Write Mode (Writing data from MPU to SPLC780)

61		Limit		T 46 Pd			
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Unit	Test Condition
E Cycle Time	tc	1000	-	-	ns	Pin E	
E Pulse Width	t _{PW}	450	-	-	ns	Pin E	
E Rise/Fall Time	t _R , t _F	-	-	25	ns	Pin E	
Address Setup Time	t _{SP1}	60	-	-	ns	Pins: RS, R/W, E	
Address Hold Time	t _{HD1}	20	-	-	ns	Pins: RS, R/W, E	
Data Setup Time	t _{SP2}	195	-	-	ns	Pins: DB0 - DB7	
Data Hold Time	t _{HD2}	10	-	-	ns	Pins: DB0 - DB7	

7.1.4. Read Mode (Writing data from SPLC780 to MPU)

Characteristics	6hl		Limit		11-24	Total Constitution
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
E Cycle Time	tc	1000	-	-	ns	Pin E
E Pulse Width	t _W	450	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	-	-	25	ns	Pin E
Address Setup Time	t _{SP1}	60	-	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	20	-	-	ns	Pins: RS, R/W, E
Data Output Delay Time	t₀	-	-	360	ns	Pins: DB0 - DB7
Data hold time	t _{HD2}	5.0	-	-	ns	Pin DB0 - DB7

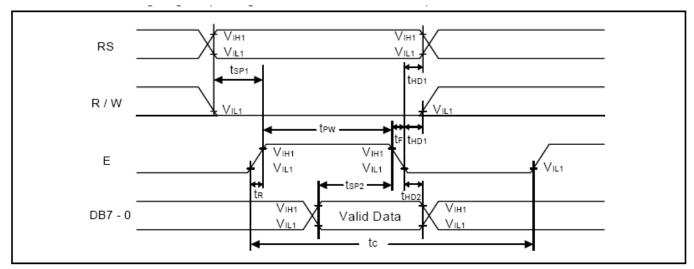
7.2 SPLC780 Timing

7.2.1. Internal clock operation

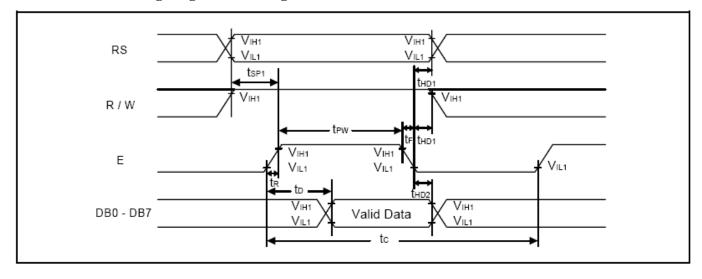
61		Limit		11.5	T (C P)		
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
OSC Frequency	F _{osc1}	190	270	350	KHz	VDD = 5.0V, Rf = 91KΩ±2%	

7.2.2. External clock operation

Characteristics	6hl		Limit		11-24	Total Constition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
External Frequency	F _{osc2}	125	250	350	KHz	
Duty Cycle		45	50	55	%	
Rise/Fall Time	tr, tf	-	-	0.2	μS	


7.2.3. Write Mode (Writing data from MPU to SPLC780)

			Limit		11.5	T 40 PM
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
E Cycle Time	tc	500	-	-	ns	Pin E
E Pulse Width	t _{PW}	230	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	-	-	20	ns	Pin E
Address Setup Time	t _{SP1}	40	-	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	10	-	-	ns	Pins: RS, R/W, E
Data Setup Time	t _{SP2}	80	-	-	ns	Pins: DB0 - DB7
Data Hold Time	t _{HD2}	10	-	-	ns	Pins: DB0 - DB7


7.2.4. Read Mode (Writing data from SPLC780 to MPU)

			Limit			T . O . III
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
E Cycle Time	tc	500	-	-	ns	Pin E
E Pulse Width	t _w	230	-	-	ns	Pin E
E Rise/Fall Time	t _R , t _F	-	-	20	ns	Pin E
Address Setup Time	t _{SP1}	40	-	-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	10	-	-	ns	Pins: RS, R/W, E
Data Output Delay Time	t₀	-	-	120	ns	Pins: DB0 - DB7
Data hold time	t _{HD2}	5.0	-	-	ns	Pin DB0 - DB7

7.3 Write mode timing diagram (Writing Data from MPU to SPLC780)

7.3 Read mode timing diagram (Writing Data from SPLC780 to MPU)

8. FUNCTIONAL DESCRIPTIONS

8.1. Oscillator

SPLC780C oscillator supports not only the internal oscillator operation, but also the external clock operation.

8.2. Control and Display Instructions

Control and display instructions are described in details as follows:

8.2.1. Clear display

		DDT	DB6	DB2	DB4	DB3	DB2	DB1	DB0
Code 0	0	0	0	0	0	0	0	0	1

It clears the entire display and sets Display Data RAM Address 0 in Address Counter.

8.2.2. Return home

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	0	0	0	0	0	0	0	1	Х

X: Do not care (0 or 1)

It sets Display Data RAM Address 0 in Address Counter and the display returns to its original position. The cursor or blink goes to the most-left side of the display (to the 1st line if 2 lines are displayed). The contents of the Display Data RAM do not change.

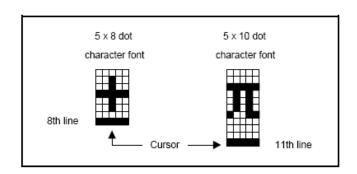
8.2.3. Entry mode set

During writing and reading data, it defines cursor moving direction and shifts the display.

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code 0	0	0	0	0	0	0	1	I/D	s

I / D = 1: Increment, I / D = 0: Decrement.

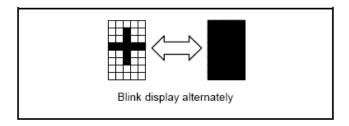
S = 1: The display shift, S = 0: The display does not shift.


I	S = 1	I / D = 1	It shifts the display to the left
I	S = 1	I / D = 0	It shifts the display to the right

8.2.4. Display ON/OFF control

Code 0 0 0 0 0 0 1 D		RS R/W	DB1	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Code	0 0	0	0	0	0	1	D	O	В

D = 1: Display on, D = 0: Display off C = 1: Cursor on, C = 0: Cursor off


B = 1: Blinks on, B= 0: Blinks off

8.2.5. Cursor or display shift

Without changing DD RAM data, it moves cursor and shifts display.

_	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	0	0	0	0	1	S/C	R/L	Х	Х

S/C	R/L	Description	Address Counter
0	0	Shift cursor to the left	AC = AC - 1
0	1	Shift cursor to the right	AC = AC + 1
1	0	Shift display to the left. Cursor follows the display shift	AC = AC
1	1	Shift display to the right. Cursor follows the display shift	AC = AC

8.2.6. Function set

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	0	0	0	1	DL	N	F	Х	Х

X: Do not care (0 or 1)

DL: It sets interface data length.

DL = 1: Data transferred with 8-bit length (DB7 - 0).

DL = 0: Data transferred with 4-bit length (DB7 - 4).

It requires two times to accomplish data transferring.

N: It sets the number of the display line.

N = 0: One-line display.

N = 1: Two-line display.

F: It sets the character font.

F = 0: 5 x 8 dots character font.

F = 1: 5 x 10 dots character font.

N	F	No. of Display Lines	Character Font	Duty Factor
0	0	1	5 x 8 dots	1/8
0	1	1	5 x 10 dots	1 / 11
1	Х	2	5 x 8 dots	1 / 16

It cannot display two lines with 5 x 10 dots character font.

8.2.7. Set character generator RAM address

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	0	0	1	а	а	а	а	а	а

It sets Character Generator RAM Address (aaaaaa)2 to the Address Counter.

Character Generator RAM data can be read or written after this setting.

8.2.8. Set display data RAM address

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	0	1	а	а	а	а	а	а	а

It sets Display Data RAM Address (aaaaaaaa)₂ to the Address Counter.

Display data RAM can be read or written after this setting.

In one-line display (N = 0),

(aaaaaaa)2: (00)16 - (4F)16.

In two-line display (N = 1),

(aaaaaaa)_{2:} (00)₁₆ - (27)₁₆ for the first line, (aaaaaaa)_{2:} (40)₁₆ - (67)₁₆ for the second line.

8.2.9. Read busy flag and address

F	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	0	1	BF	а	а	а	а	а	а	а

When BF = 1, it indicates the system is busy now and it will not accept any instruction until not busy (BF = 0). At the same time, the content of Address Counter (aaaaaaa)₂ is read.

8.2.10. Write data to character generator RAM or display data RAM

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	1	0	d	d	d	d	d	d	d	d

It writes data (dddddddd)₂ to character generator RAM or display data RAM.

8.2.11. Read data from character generator RAM or display data RAM

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Code	1	1	đ	d	d	d	d	d	d	d

It reads data (dddddddd)₂ from character generator RAM or display data RAM.

To read data correctly, do the following:

- The address of the Character Generator RAM or Display Data RAM or shift the cursor instruction.
- 2). The "Read" instruction.

8.3. Instruction Table

la describer				Ins	tructi	on C	ode				Ddefe	Execution time
Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM	1.52ms
											address to "00H" from AC	
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and	1.52ms
											return cursor to its original position if	
											shifted. The contents of DDRAM are not	
		_	_	_	_	_	_			_	changed.	
Entry Mode	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction and enable	38µs
Set Display ON/	0	0	0	0	0	0	1	D	С	В	the shift of entire display	38µs
OFF Control	"	U	U	0	0	٥	'			В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	Sous
Cursor or	0	0	0	0	0	1	S/C	R/L	_	-	Set cursor moving and display shift control	38µs
Display Shift											bit, and the direction, without changing of	,
											DDRAM data.	
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8-bit/4-bit),	38µs
											numbers of display line (N: 2-line/1-line)	
											and, display font type (F:5x10 dots/5x8	
											dots)	
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	38µs
Address	_	0	_	100	405	404	400	400	101	400	O A DDDAM - H	20
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AG2	AC1	AC0	Set DDRAM address in counter	38µs
Read Busy Flag	0	1	BF	AC6	AC5	AC4	ΔC3	AC2	AC1	ACO	Whether during internal operation or not	
and Address	ľ	'	D1	700	703	704	703	702	ΛΟ1	700	can be known by reading BF. The	
Counter											contents of address counter can also be	
											read.	
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM	38µs
											(DDRAM/CGRAM).	
Read Data from	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM	38µs
RAM											(DDRAM/CGRAM).	

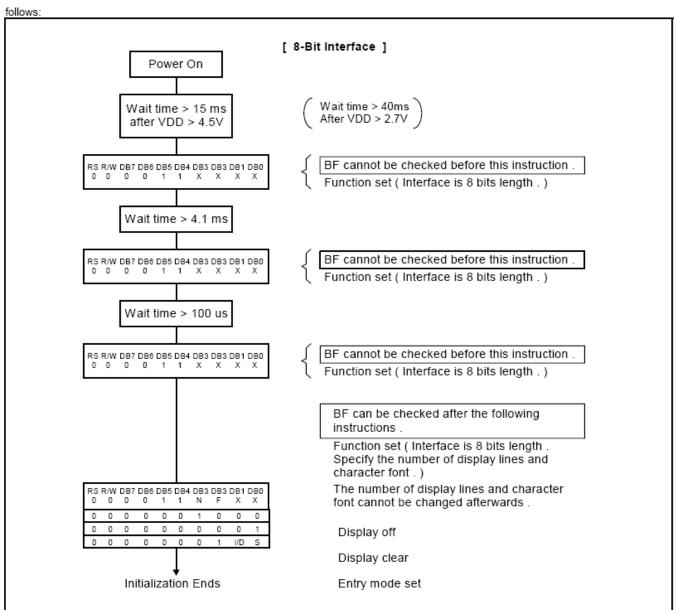
Note: "-": don't care

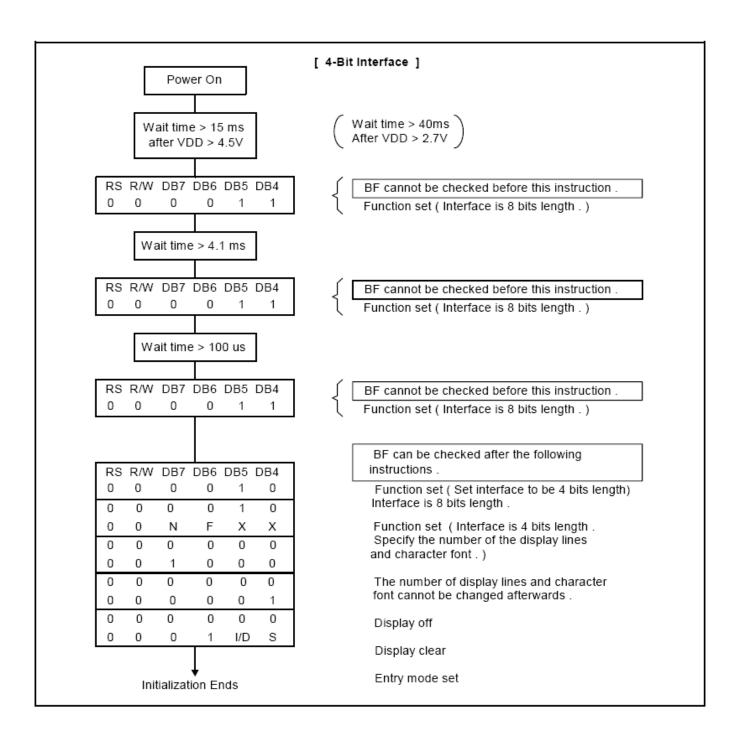
8.4. 8-Bit Operation and 8-Digit 1-Line Display (Using Internal Reset)

No.	Instruction	Display	Operation
1	Power on. (SPLC780C starts initializing)		Power on reset. No display.
2	Function set RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 0 0 X X		Set to 8-bit operation and select 1-line display line and character font.
3	Display on / off control	_	Display on. Cursor appear.
4	Entry mode set 0 0 0 0 0 0 0 0 1 1 0	_	Increase address by one. It will shift the cursor to the right when writing to the DD RAM/CG RAM. Now the display has no shift.
5	Write data to CG RAM / DD RAM	W_	Write " W ". The cursor is incremented by one and shifted to the right.
6	Write data to CG RAM / DD RAM	WE_	Write " E ". The cursor is incremented by one and shifted to the right.
7	:	:	
8	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 1 0 1	WELCOME_	Write " E ". The cursor is incremented by one and shifted to the right.
9	Entry mode set 0	WELCOME_	Set mode for display shift when writing
10	Write data to CG RAM / DD RAM 1 0 0 0 1 0 0 0 0 0 0	ELCOME_	Write " "(space). The cursor is incremented by one and shifted to the right.
11	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 0 1 1	LCOME C_	Write " C ". The cursor is incremented by one and shifted to the right.
12	:	:	
13	Write data to CG RAM / DD RAM 1 0 0 1 0 1 1 0 0 1	COMPAMY_	Write " Y ". The cursor is incremented by one and shifted to the right.
14	Cursor or display shift 0 0 0 0 0 1 0 0 x x	COMPAMY_	Only shift the cursor's position to the left (Y).
15	Cursor or display shift 0 0 0 0 0 1 0 0 x x	COMPAMY_	Only shift the cursor's position to the left (M).
16	Write data to CG RAM / DD RAM 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0	OMPANY_	Write " N ". The display moves to the left.
17	Cursor or display shift 0 0 0 0 0 1 1 1 1 X X	COMPAMY_	Shift the display and the cursor's position to the right.
18	Cursor or display shift 0 0 0 0 0 1 0 1 X X	OMPANY_	Shift the display and the cursor's position to the right.
19	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 0 0 0 0	COMPAMY_	Write " " (space). The cursor is incremented by one and shifted to the right.
20	:	:	:
21	Return home	WELCOME_	Both the display and the cursor return to the original position (address 0).

8.5. 4-Bit Operation and 8-Digit 1-Line Display (Using Internal Reset)

No.					Inst	ucti	on		Display	Operation
1		wer PLC			tarts	initi	alizir	ng)		Power on reset. No display.
2	R				DB6	DB5	DB4			Set to 4-bit operation.
3	H	+	0	0	0	1 X	0 X			Set to 4-bit operation and select 1-line display line and character font.
4	\vdash	+	0	0	0	0	0		_	Display on. Cursor appears.
5		+	0	0	0	0	0		_	Increase address by one. It will shift the cursor to the right when writing to the DD RAM / CG RAM. Now the display has no shift.
6	,	-	D D	0	1	0	1		W_	Write " W ". The cursor is incremented by one and shifted to the right.

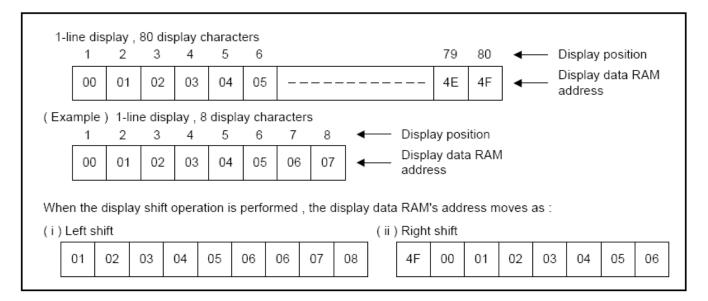

8.6. 8-Bit Operation and 8-Digit 2-Line Display (Using Internal Reset)


No.	Instruction	Display	Operation
1	Power on. (SPLC780C starts initializing)		Power on reset. No display.
2	Function set RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 1 1 0 X X		Set to 8-bit operation and select 2-line display line and 5 x 8 dot character font.
3	Display on / off control	_	Display on. Cursor appear.
4	Entry mode set 0 0 0 0 0 0 0 1 1 0		Increase address by one. It will shift the cursor to the right when writing to the DD RAM / CG RAM. Now the display has no shift.
5	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 1 1 1	W_	Write " W ". The cursor is incremented by one and shifted to the right.
6	:	:	:
7	Write data to CG RAM / DD RAM 1 0 0 1 0 0 0 1 0 1	WELCOME_	Write " E ". The cursor is incremented by one and shifted to the right.
8	Set DD RAM address 0 0 1 1 0 0 0 0 0 0	WELCOME _	It sets DD RAM's address. The cursor is moved to the beginning position of the 2nd line.
9	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 0 0	WELCOME T_	Write " T ". The cursor is incremented by one and shifted to the right.
10	:	:	:
11	Write data to CG RAM / DD RAM 1 0 0 1 0 1 0 1 0 0	WELCOME TO PART_	Write " T ". The cursor is incremented by one and shifted to the right.

No.	Instruction	Display	Operation
12	Entry mode set 0 0 0 0 0 0 0 1 1 1	WELCOME TO PART_	When writing, it sets mode for the display shift.
13	Write data to CG RAM / DD RAM 1 0 0 1 0 1 1 0 0 1	ELCOME O PARTY_	Write " Y ". The cursor is incremented by one and shifted to the right.
14	:	:	:
15	Return home 0 0 0 0 0 0 0 0 1 0	WELCOME TO PARTY	Both the display and the cursor return to the original position (address 0).

8.7. Reset Function

At power on, SPLC780C starts the internal auto-reset circuit and executes the initial instructions. The initial procedures are shown as



8.8. Display Data RAM (DD RAM)

The 80-bit DD RAM is normally used for storing display data. Those DD RAM not used for display data can be used as general data RAM. Its address is configured in the Address Counter.

The relationships between Display Data RAM Address and LCD's position are depicted as follows.

8.9. Timing Generation Circuit

The timing generating circuit is able to generate timing signals to the internal circuits. In order to prevent the internal timing interface, the MPU access timing and the RAM access timing are generated independently.

8.10. LCD Driver Circuit

Total of 16 commons and 40 segments signal drivers are valid in the LCD driver circuit. When a program specifies the character fonts and line numbers, the corresponding common signals output drive-waveforms and the others still output unselected waveforms.

8.11. Character Generator ROM (CG ROM)

Using 8-bit character code, the character generator ROM generates 5×8 dots or 5×10 dots character patterns. It also can generate 192's 5×8 dots character patterns and 64's 5×10 dots character patterns.

8.12. Character Generator RAM (CG RAM)

Users can easily change the character patterns in the character generator RAM through program. It can be written to 5 x 8 dots, 8-character patterns or 5×10 dots for 4-character patterns.

The following diagram shows the SPLC780C character patterns: Correspondence between Character Codes and Character Patterns.

			l .					r 4-bit (D4			`			_	_	l _	Τ_
L		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	CG RAM (1)															
	1	CG RAM (2)															
	2	CG RAM (3)															
	3	CG RAM (4)															
	4	CG RAM (5)															
(g)	5	CG RAM (6)															
Code (Hexadecimal)	6	CG RAM (7)															
Character Code	7	CG RAM (8)															
D3) of	8	CG RAM (1)															
Lower 4-bit (D0 to I	9	CG RAM (2)															
٥	А	CG RAM (3)															
	В	CG RAM (4)															
	С	CG RAM (5)															
	D	CG RAM (6)															
	Е	CG RAM (7)															
	F	CG RAM (8)												8			

The relationships between Character Generator RAM Addresses, Character Generator RAM Data (character patterns), and Character Codes are depicted as follows:

8.12.1. 5 x 8 dot character patterns

		Cha (DD			ode ata))				CG I Add									r Pat M Da				
b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0		b7	b6	b5	b4	b3	b2	b1	b0	
					//			17			0	0	0		= =		= =	1	1	1	1	1	
											0	0	1					0	0	1	0	0	Character
											0	1	0		==			0	0	1	0	0	Pattern
0	0	_	_	V	6	6	0	6	6		0	1	1		×	X	ĘŢ	0	0	1	0	0	Example (1)
U	0	0	0	Х	//	//		//	//	///	1	0	0				X	0	0	1	0	0	
											1	0	1				ΕΞ	0	0	1	0	0	
											1	1	0				ΕΞ	0	0	1	0	0	Cursor
											1	1	1				題	0	0	0	0	0	Position ←
											0	0	0					0	1	1	1	0	
											0	0	1		×	X		0	0	1	0	0	Character
											0	1	0		==		ΕĒ	0	0	1	0	0	Pattern
0	0	0	0	Х	6	6		6	6	//	0	1	1		= = -x	= = = x	= = x	0	0	1	0	0	Example (2)
					//						1	0	0				X	0	0	1	0	0	
											1	0	1				ΕĒ	0	0	1	0	0	
											1	1	0					0	1	1	1	0	
											1	1	1			Ξ	ΕΞ	0	0	0	0	0	
														_									
											_										_		

Note1: It means that the bit0~2 of the character code correspond to the bit3~5 of the CG RAM address.

Note2: These areas are not used for display, but can be used for the general data RAM.

Note3: When all of the bit4-7 of the character code are 0, CG RAM character patterns are selected.

Note4: " 1 ": Selected, " 0 " : No selected , " X " : Do not care (0 or 1).

Note5: For example (1), set character code (b2 = b1 = b0 = 0, b3 = 0 or 1, b7-b4 = 0) to display "T". That means character code (00) 16,and (08) 16 can display "T" character.

Note6: The bits 0-2 of the character code RAM is the character pattern line position. The 8th line is the cursor position and display is formed by logical OR with the cursor.

9. Character Generation ROM

Hann											1			I		
Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	СННН	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	нннн
LLLL																
LLLH																
LLHL																
СЕНН																
LHLL																
LHLH																
LHHL																
СННН																
HLLL																
HLLH																
нгнг																
нгнн																
ннгг																
ннгн																
нннг																
нннн																

10. INTERFACE PIN CONNECTIONS

CN1 (SPLC780 Controller)

PIN	SYMBOL	I/O	FUNCTION
1	VSS	-	Ground pin, connected to 0V
2	VDD	-	Power supply pin for logic .(+5V)
3	V0	-	Contrast control (VDD~VSS)
		I	A signal for selecting registers:
4	RS		1: Data register (for read and write)
"	110		0: Instruction register (for write)
			Busy flag – Address Counter (for read).
		I	A signal for selecting read and write actions:
5	R/W		1: Read
	0: Write		
		I	A signal for selecting reading and writing data:
6	Е		1: Start
			0: Stop
7	DB0	I	Tristate input/output pins. Connect these pins to an 8-bit microprocessor bus.
	DB1	I	Tristate input/output pins. Connect these pins to an 8-bit microprocessor bus.
9	DB2	I/O	Tristate input/output pins. Connect these pins to an 8-bit microprocessor bus.
10	DB3	I/O	Tristate input/output pins. Connect these pins to an 8-bit microprocessor bus.
11	DB4	I/O	Tristate input/output pins. Connect these pins to an 4-bit/8-bit microprocessor bus.
12	DB5	I/O	Tristate input/output pins. Connect these pins to an 4-bit/8-bit microprocessor bus.
13	DB6	I/O	Tristate input/output pins. Connect these pins to an 4-bit/8-bit microprocessor bus.
14	DB7	I/O	Tristate input/output pins. Connect these pins to an 4-bit/8-bit microprocessor bus.
15	LEDA	-	LED anode (+5V)
16	LEDK	-	LED cathode (0V)

11.RELIABILITY

Content of Reliability Test

		Environmental Test		
No.	Test Item	Content of Test	Test Condition	Applicable Standard
1	High temperature	Endurance test applying the high storage	80 ℃	
	storage	temperature for a long time.	200 hrs	
2	Low temperature	Endurance test applying the low storage	-30 ℃	
	storage	temperature for a long time.	200 hrs	
3	High temperature	Endurance test applying the electric stress	70 ℃	
	operation	(Voltage & Current) and the thermal stress to	200 hrs	
		the element for a long time.		
4	Low temperature	Endurance test applying the electric stress	-20 ℃	
	operation	under low temperature for a long time.	200 hrs	
5	High temperature	Endurance test applying the high temperature	80 °C , 90 RH	MIL-202E-103B
	Humidity storage	and high humidity storage for a long time.	96 hrs	JIS-C5023
6	High temperature	Endurance test applying the electric stress	70 °C , 90 RH	MIL-202E-103B
	Humidity	(Voltage & Current) and temperature humidity	96 hrs	JIS-C5023
	operation	stress to the element for a long time.		
7	Temperature	Endurance test applying the low and high	-20℃ - +70℃ 10	
	cycle	temperature cycle.	cycles	
		-20℃ +25℃ +70℃		
		30min.		
		\leftarrow		
		1 cycle		
Mech	anical Test			
8	Vibration test	Endurance test applying the vibration during	40.0011 -> 4.5	MIL-202E-201A
		transportation and using.	10-22Hz → 1.5mmp-p	JIS-C5025
			00 50011 ->4 50	JIS-C7022-A-10
			22-500Hz → 1.5G	
			Total 0.5hrs	
9	Shock test	Constructional and mechanical endurance test	50G half sign wave 1I	MIL-202E-213B
		applying the shock during transportation.	msedc 3 times of each	
			direction	
10	Atmospheric	Endurance test applying the atmospheric	115 mbar 40 hrs	MIL-202E-105C
	pressure test	pressure during transportation by air.		
Othe	rs			
11	Static electricity	Endurance test applying the electric stress to	VS=800V, RS=1.5 k	MIL-883B-3015.1
	test	the terminal.	CS=100 pF	
			1 time	

^{***} Supply voltage for logic system = 3V. Supply voltage for LCD system = Operating voltage at 25°C.

Failure Judgment Criterion

Criterion Item		Test Item No.									Failure Judgment Criterion	
	1	2	3	4	5	6	7	8	9	10	11	
Basic specification												Out of the Basic Specification
Electrical characteristic												Out of the DC and AC
Electrical criaracteristic												Characteristics
Mechanical												Out of the Mechanical Specification
characteristics												Color change : Out of Limit
												Apperance Specification
Optical characteristics												Out of the Apperance Standard

12. QUALITY GUARANTEE

Acceptable Quality Level

Each lot should satisfy the quality level defined as follows.

- Inspection method : MIL-STD-105E LEVEL II Normal one time sampling
- AQL

Partition	AQL	Definition
A: Major	0.4%	Functional defective as product
B: Minor	1.5%	Satisfy all functions as product but not satisfy cosmetic standard

Definition of 'LOT'

One lot means the delivery quantity to customer at one time.

Conditions of Cosmetic Inspection

Environmental condition

The inspection should be performed at the 1cm of height from the LCD module under 2 pieces of 40W white fluorescent lamps (Normal temperature $20\sim25$ °C and normal humidity 60 ± 15 %RH).

Inspection method

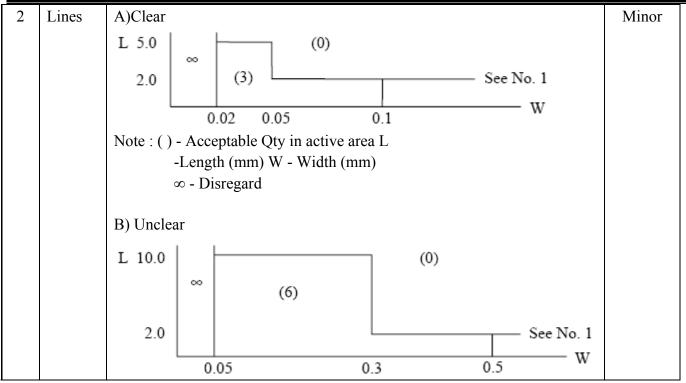
The visual check should be performed vertically at more than 30cm distance from the LCD panel.

Driving voltage

The VO value which the most optimal contrast can be obtained near the specified VO in the specification. (Within ± 0.5 V of typical value at 25°C.).

13. INSPECTION CRITERIA

13.1 Module Cosmetic Criteria


No.	Item	Judgment Criterion	Partition
1	Difference in Spec.	None allowed	Major
2	Pattern peeling	No substrate pattern peeling and floating	Major
3	Soldering defects	No soldering missing	Major
		No soldering bridge	Major
		No cold soldering	Major
4	Resist flaw on substrate	Invisible copper foil ('0.5mm or more) on substrate pattern	Minor
5	Accretion of metallic	No soldering dust No accretion of metallic foreign matters	Minor
	Foreign matter	(Not exceed '0.2mm)	Minor
6	Stain	No stain to spoil cosmetic badly	Minor
7	Plate discoloring	No plate fading, rusting and discoloring	Minor
8	Solder amount 1. Lead parts	a. Soldering side of PCB Solder to form a 'Filet' all around the lead. Solder should not hide the lead form perfectly. (too much) b. Components side (In case of 'Through Hole PCB') Solder to reach the Components side of PCB.	Minor
	2. Flat packages3. Chips	Either 'Toe' (A) or 'Seal' (B) of the lead to be covered by 'Filet'. Lead form to be assume over solder. A B (3/2) H >h > (1/2) H	Minor

13.2 Screen Cosmetic Criteria (Non-Operating)

No.	Defect	Judgment Criterion	Partition				
1	Spots	In accordance with Screen	Minor				
2	Lines	In accordance with Screen	Minor				
3	Bubbles in polarizer	Size : d mm					
	politizer	$d \le 0.3$ $0.3 < d \le 1.0$	Disregard 3				
		1.0 < d ≤ 1.5 1.5 < d	1 0				
4	Scratch	In accordance with spots When the light reflects on the be remarkable.	Minor				
5	Allowable density	Above defects should be	Minor				
6	Coloration	Not to be noticeable color panels. Back-lit type sho	Minor				
7	Contamination	Not to be noticeable.		Minor			

13.3. Screen Cosmetic Criteria (Operating)

Defect	Judgment Criterion		Partition			
Spots	A) Clear Note:					
	Size : d mm	Acceptable Qty in active area				
	d ≤ 0.1	Disregard				
	$0.1 < d \le 0.2$	3				
	$0.2 < d \le 0.3$	2				
	0.3 < d	0				
	Including pin holes and defe size. B) Unclear Size:	ctive dots which must be within one pixel				
	Size : d mm	Acceptable Qty in active area				
	d ≤ 0.2	Disregard				
	$0.2 < d \le 0.5$	6				
	$0.5 < d \le 0.7$	2				
	0.7 < d	0				
		Spots A) Clear Note: Size : d mm d \leq 0.1 0.1 < d \leq 0.2 0.2 < d \leq 0.3 0.3 < d Including pin holes and defessize. B) Unclear Size : Size : d mm d \leq 0.2 0.2 < d \leq 0.5 0.5 < d \leq 0.7				

'Clear' = The shade and size are not changed by VO.

13.4. Screen Cosmetic Criteria (Operating) (Continued)

No.	Defect	Judgment Criterion	Partition				
3	Rubbing line	Not to be noticeable.					
4	Allowable density	Above defects should be separated more than 10mm each other.	Minor				
5	Rainbow	Not to be noticeable.	Minor				
6	Dot size	To be 95% ~ 105% of the dot size (Typ.) in drawing. Partial	Minor				
		defects of each dot (ex. pin-hole) should be treated as 'Spot'. (see					
		Screen Cosmetic Criteria (Operating) No.1)					
7	Uneven	Uneven brightness must be BMAX / BMIN ≤ 2	Minor				
	brightness (only	- BMAX : Max. value by measure in 5 points					
	back-lit type	- BMIN : Min. value by measure in 5 points					
	module)	Divide active area into 4 vertically and horizontally. Measure					
		5 points shown in the following figure.					
		0 0					
		0					
		O : Measuring points					

^{&#}x27;Unclear' = The shade and size are changed by VO.

Note:

- (1) Size : d = (long length + short length) / 2
- (2) The limit samples for each item have priority.
- (3) Complexed defects are defined item by item, but if the number of defects are defined in above table, the total number should not exceed 10.
- (4) In case of 'concentration', even the spots or the lines of 'disregarded' size should not allowed. Following three situations should be treated as 'concentration'.
 - 7 or over defects in circle of '5mm.
 - 10 or over defects in circle of '10mm.
 - 20 or over defects in circle of '20mm.

14. PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the IO cable or the backlight cable.
 - (9) Do not attempt to disassemble or process the LCD module.
 - (10) NC terminal should be open. Do not connect anything.
 - (11) If the logic circuit power is off, do not apply the input signals.
- (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - Be sure to ground the body when handling the LCD modules.

- Tools required for assembling, such as soldering irons, must be properly grounded.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage Precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags (avoid high temperature high humidity and low temperatures below 0 C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

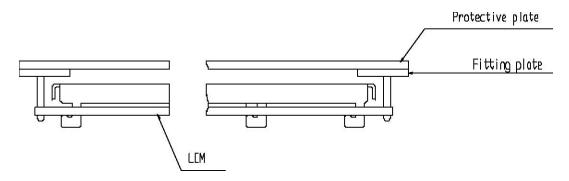
- Exposed area of the printed circuit board.
- Terminal electrode sections.

15. USING LCD MODULES

Liquid Crystal Display Modules

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
 - (6) Avoid contacting oil and fats.
 - (7) Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the


polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temp erature air.

- (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
 - (10) As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be 0.1mm.

Precaution for Handing LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- (1) Do not alter, modify or change the the shape of the tab on the metal frame.
- (2) Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - (3) Do not damage or modify the pattern writing on the printed circuit board.
 - (4) Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
 - (5) Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - (6) Do not drop, bend or twist LCM.

Electro-Static Discharge Control

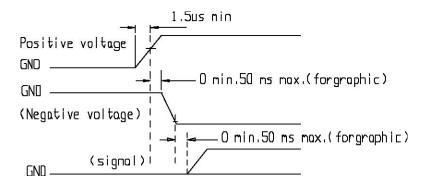
Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- (1) Make certain that you are grounded when handing LCM.
- (2) Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
 - (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not

leak.

- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- (6) To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%60% is recommended.

Precaution for soldering to the LCM


- (1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.
 - Soldering iron temperature : 280 C 10 C.
 - Soldering time : 3-4 sec.
 - Solder : eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dur to flux spatters.

- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electoluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
 - (2) Driving the LCD in the voltage above the limit shortens its life.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40 °C, 50% RH.
 - (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

Storage

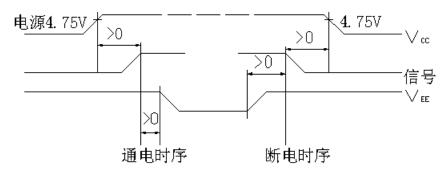
When storing LCDs as spares for some years, the following precaution are necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0 C and 35 C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)

Safety

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leakes out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Return LCM under warranty


No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet's damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.

液晶显示模块使用注意事项

- 1. 请勿随意自行加工、整修、拆卸。
- 2. 避免对液晶屏表面施加压力。
- 3. 不要用手随意去摸外引线、电路板上的电路及金属框。
- 4. 如必须直接接触时,应使人体与模块保持同一电位,或将人体良好接地。
- 5. 焊接使用的烙铁、操作用的电动改锥等工具必须良好接地,没漏电。
- 6. 严防各种静电。
- 7. 模块使用接入电源及断开电源时,必须按图时序进行。即必须在正电源(5±0.25V) 稳定接入后,才能输入信号电平。如在电源稳定接入前,或断开后就输入信号电平, 将会损坏模块中的集成电路,使模块损坏。

- 8. 点阵模块在调节时,应调整 VEE 至最佳对比度、视角时为止。如果 VEE 调整过高,不仅会影响显示,还会缩短液晶的寿命。
- 9. 模块表面结雾时,不要通电工作,因为这将引起电极化学反应,产生断线。
- 10. 模块要存储在暗处(避阳光),温度在-10℃~+35℃,湿度在 RH60%以上的地方。 如能装入聚乙烯口袋(最好有防静电涂层)并将口封住最好。

以上使用说明由北京中显电子有限公司编制,有问题请电话联络,我们将竭诚为您服务,同时,提供完善的保修服务!因为每种液晶使用的控制器都不一样,控制器的型号基本就决定了液晶的指令形式和使用方式,所以,在说明书里一般不会详细照搬控制器说明书的每个细节,只会简要介绍常用指令,如果需要了解详细的指令和具体电气参数,请参照WWW.ZXLCD.COM网站里的"技术支持"菜单下,均有对应控制器手册免费下载,直接对应现有各类液晶使用的各种控制器,使用手册里一般有具体电气参数说明,指令详细介绍,同时辅以编程实例,以便客户详细参照,同时提高编程及操作技巧。

服务电话: 010-52926620,82626833

公司地址:北京市中关村大街 32 号蓝天和盛大厦 811 室